Overall Confidence Rating: H ## Site: Tomato (Page 1) Background: During 1994-96, there was a mean of 472,000 harvested acres (72% processed¹⁸, 28% fresh). CA, FL, OH, IN, and NY comprised 90% of the acreage⁴. Of the 874,000 acres treated, 17% were treated with organophosphates. Organophosphates were applied approximately 3.1 times per acre per year during the period⁵. Fresh tomatoes were treated much more than processed. CA produced about 95% of the processed and FL produced most of the fresh. The following insecticides have usage, registration, and tolerances¹² for tomatoes. | Organophosphate | % Tre | eated ¹ | # Appl | ications | Rate (lb | AI/A) | PHI (days) | | |---|------------------------------|-----------------------------|-------------------------------|--------------------------------|------------------|--------------------------------|------------------|---| | Pesticides | Max | Avg | Max ² | Avg ¹ | Max ² | Avg ¹ | Min ² | Avg | | azinphos-methyl ^{1, 5, 10, 17} | 25 | 15 | 411 | 1.510 | 1.5 | 0.6^{10} | 0 | 7 ^{3a,c} -
14 ^{3c,e,u} | | methamidophos ^{1, 5, 10, 17} | Process
11
Fresh
90 | Process
9
Fresh
58 | 5 | Process
1.1
Fresh
4.2 | 1 | Process
0.9
Fresh
0.8 | 7 | 14 ^{3a} | | dimethoate ^{1, 5, 10, 17} | 10 | 9 | 2^{3} | 1.410 | 0.5 | 0.5^{10} | 7 | 7 ^{3a,c,e} | | malathion ^{1, 5, 10, 17} | 9 | 4 | Not
specified
on labels | 2.5 | 21.6 | 0.2 | 1 | 1 ^{3a} | | diazinon ^{1, 5, 10, 17} | 7 | 4 | 5 | 2 | 11.5 | 0.4 | 1 | 1 ^{3c} -60 ^{3a,t} | | chlorpyrifos ^{1, 5, 10, 17} | 4 | 2 | 8 | 1.4 | 1 | Not
Availab
le | 14 | Not
Availab
le | | methyl parathion ^{1,5,10} | 3 | 1 | Not
specified
on labels | 1 ^{3d} | 1.5 | 1 ^{7e} | 5 | 15 ^{3a} | | disulfoton ^{1, 5, 17} | 0.1^{3a} | 0 | 1 | 1 | 3 | 1.3 | 30 | 90^{3a} | Confidence Rating: H= hi H= high confidence = data from several confirming sources; confirmed by personal experience M = medium confidence = data from only a few sources; may be some conflicting or unconfirmed info. L = low confidence = data from only one unconfirmed source | Organophosphate Target Pests for Tomatoes ⁵ | | | | | | | | | | |--|---|--|--|--|--|--|--|--|--| | Major | aphids (potato, green peach) ^{6,7a} , tomato pinworm; wireworms; whiteflies (silverleaf ^{7a}); leafminer (<i>Liriomyza</i> ^{7a}) | | | | | | | | | | Moderate | flea beetles; cutworm; symphylans; beet leafhopper ^{7a} ; tomato fruitworm; beet armyworm; Colorado potato beetle; fruit flies (<i>Drosophila</i> ^{7a}); crickets | | | | | | | | | | Minor | thrips; stink bugs; lygus bugs | | | | | | | | | Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor =<5% of all OP usage on pest Note: Fonofos, oxydemeton-methyl, dicrotophos, naled¹⁹, and acephate have usage but not tolerances^{5, 12}. ## **Sources:** (Crop and Pest Summaries) - ¹QUA. 1993-1997. EPA Quantitative Usage Analysis. Methamidophos is the only insecticide for which average numbers of applications and lbs per year are available for fresh and processed; therefore, weighted averages are given for fresh and processed. - ²LUIS. 1998. Label Use Information System, version 5.0, EPA. - ^{3a}QUA+, Quantitative Usage Analysis, EPA. California Processing Tomato Industry FQPA Response. 1997. Diazinon and disulfoton were applied at plant. - ^{3b}QUA+, Quantitative Usage Analysis, EPA. California Tomato Research Institute report to NCFAP. Insecticide Use on California Tomatoes. 1995. Wireworms, potato aphids, and stink bugs listed as major pests in processed tomatoes. - ^{3c}QUA+, Quantitative Usage Analysis, EPA. Pesticide Use and Usage in Michigan 1997. 1998. - ^{3e}QUA+, Quantitative Usage Analysis, EPA. Rutgers University, NJ. 1998. - ^{3f}QUA+, Quantitative Usage Analysis, EPA. Valent. Methamidophos. 1998. - ^{3g}QUA+, Quantitative Usage Analysis, EPA. Atochem. Methyl Parathion. 1998. - ^{3t}MI had ca. 2% of acreage and CA 98%⁴, so weighted average PHI is 59. - ^{3u}MI 2%, and CA 98% of the acreage⁴, so weighted average PHI is 13. - ⁴Agricultural Statistics. USDA. 1998. - ⁵Proprietary EPA Quantitative Pesticide Usage. 1997. - ⁶ Proprietary EPA Quantitative Pesticide Usage. 1997. - ^{7a}University of California, Pest Management Guidelines, Tomato. 1997. - ^{7b}University of Florida, 1996 Florida Insect Management Guide, Insect Management in Tomatoes. 1996. - ^{7c}Ohio Vegetable Production Guide, Tomatoes: Fresh Market and Processing, Insect Control. 1997. - ^{7d}Purdue University [IN], Management of Insect Pests on Fresh Market Tomatoes. 1993. - ⁷eCornell [NY] Cooperative Extension, Pest Management Recommendations, Control of Insect Pests of Tomatoes. 1998. - ⁸ Proprietary EPA Quantitative Pesticide Usage. 1996. - ¹⁰Agricultural Chemical Usage Vegetables 1996. USDA National Agricultural Statistics Service. 1997. - ¹¹Insect Control Guide. Meister Publishing. 1997. - ¹²Tolerance Index System. EPA. 1998. - ¹³Arthropod Management Tests. Ent. Soc. America. 1997. - ¹⁴Arthropod Management Tests. Ent. Soc. America. 1996. - ¹⁵Arthropod Management Tests. Ent. Soc. America. 1994. - ¹⁶EPA Section 18 records. 1995-1998. - ¹⁷US Geological Survey, Pesticide National Synthesis Project, Tomatoes for 1997. 1998. - ¹⁸Balling, S., Processed Tomato Foundation, 925-944-7377, stated in telephone communication that up to 95% of processed tomatoes produced in CA. 7/8/98. - ¹⁹FR 63:3057-3060. WWW.cas.psu.edu/docs/. - ²⁰OP Tolerance Assessment Matrix Populating Instructions & Data Dictionary, EPA, 1998. - ²¹Rivara, C. California Processing Tomato Industry. Comments on draft. July 17, 1998. - ²²University of California. California Pesticide Use Summaries, Tomato, Tomato (processing/canning) for 1994. 1998. - ²³California Dept. Pesticide Regulation and Univ. California Statewide IPM Program. Pest Management Survey Database. Tomato. 1996 - ²⁴Agricultural Information Services, Ltd. 1997. World Pest Infestation Database. Tomato, Georgia, North Carolina, California. - ²⁵www.nass.usda.gov/oh, ny, in. 1997 vegetable production stats. 1998. Date: 8/3/98 Region: California | Pest | Organophosphate | Efficacy | Mkt | | Class | Alt. Pesticide List | Efficacy | Mkt | Constraints/Notes on Alternatives | |--|----------------------------|----------------------------------|-------------------|----------------|-------|-------------------------------|----------------------------------|-------------------|---| | Timing: Seedli | Timing: Seedling | | | | | | | | | | aphid (green | dimethoate ⁵ | ⊚ ^{7a} | med ⁵ | | О | imidacloprid ⁵ | | high ⁵ | Imidacloprid at plant recommended for whitefly ^{7a} . | | peach) ^{7a}
(major) ⁵ | disulfoton ^{3a} | | lo ^{3a} | | | | | | | | • • | diazinon ⁵ | | high ⁵ | | | | | | | | | malathion ⁵ | O^{7a} | med ⁵ | | | | | | | | wireworms
(major) ^{3a,5} | diazinon ^{3a,5} | ● ²³ -⊚ ^{3a} | high ⁵ | | | | | | Wireworms major ipm concern in processed production ^{3a} . | | flea beetles | methamidophos ⁵ | | med ⁵ | d ⁵ | С | carbaryl ^{7a,3f} | ● ²³ -⊚ ^{7a} | high 5 | Carbaryl on mature fruit to remove flea beetles | | (moderate) ^{7a,5} | | | | | СН | endosulfan ^{23,3f} | | | going for processing ^{3b} | | | | | | | P | esfenvalerate ^{5,3f} | | high 5 | | | symphylan
(moderate) ⁵ | diazinon ^{3a} | O ^{3a} | | | | | | | | | | methamidophos ⁵ | | med ⁵ | | С | carbaryl ^{5,3f} | | high 5 | Methomyl plus pyrethroids used for knockdown ^{3b} | | cutworm
(moderate) ^{5,7a} | | | | | С | methomyl 5,3f | ●5 | med | | | | | | | | P | lambda-cyhalothrin 5 | ●5 | lo ⁵ | | ## ADDITIONAL INFORMATION: Note: Over 95% of seedlings are for processing to matoes. Analyzed pests make up $>\!\!95\%$ of OP usage. Observations: There are no IGRs or biologicals registered. Pyriproxifen, buprofezin, and spinosad are in the pipeline currently through Sec. 18. Major pests drive OP usage; moderate and minor pests could become major if resurgence occurs. There are no alternatives for diazinon for the soil pests wireworms and symphylans. **SOURCES:** See crop summary. Date: 6/24/98 Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = \odot Good = \bigcirc Fair = \bullet Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides Region: California | Pest | Organophosphate | Efficacy | Mkt | | Class | Alt. Pesticide List | Efficacy | Mkt | Constraints of Alternatives | |--|------------------------------|-----------------------|-------------------|---|-------|--------------------------------|-----------------|------------------|--| | Timing: Foliage/fruit | | | | | | | | | | | aphid | disulfoton ⁵ | | low ⁵ | 5 | P | permethrin ⁵ | | low ⁵ | Dimethoate hard on beneficials and nontargets ²³ | | (potato) ^{7a} | dimethoate ^{3b,5} | ⊚ ^{7a} | high ⁵ | | С | oxamyl ⁵ | O^{7a} | med ⁵ | Dimethoate only effective treatment for the pest ^{3b} | | (major) ⁵ | diazinon ⁵ | ● ^{7a} | low ⁵ | | О | imidacloprid ⁵ | ● ^{7a} | low ⁵ | | | | malathion ⁵ | O^{7a} | med ⁵ | | О | insecticidal soap ⁵ | O^{7a} | low ⁵ | | | | methamidophos ⁵ | | med ⁵ | | СН | endosulfan ^{5,3f} | O^{7a} | low ⁵ | | | | azinphos-methyl ⁵ | | med ⁵ | | В | rotenone ⁵ | | med 5 | | | | chlorpyrifos ⁵ | | low ⁵ | | С | carbaryl ^{5,3f} | | low ⁵ | | | | | | | | P | esfenvalerate ^{5,3f} | | low ⁵ | | | beet | methamidophos ⁵ | ● ^{3a} | high ⁵ | | С | carbaryl ^{7a} | ⊚ ^{7a} | | | | leafhopper ^{7a} (moderate) ⁵ | azinphos-methyl ⁵ | ● 3a | high ⁵ | | О | imidacloprid ⁵ | | low ⁵ | | | | dimethoate ⁵ | • ⁵ | high ⁵ | | Р | esfenvalerate⁵ | | low ⁵ | | Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⑤ Good = O Fair = ● Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides Region: California | Pest | Organophosphate | Efficacy | Mkt | | Class | Alt. Pesticide List | Efficacy | Mkt | Constraints of Alternatives | | |--|----------------------------|----------------------------------|-------------------|----|-------|--------------------------------|--------------------------|-------------------|---|--| | Timing: Folia | ge/fruit | | | | | | | | | | | stink bugs (minor) ³ | methamidophos ⁵ | ⊚ ^{3b} | high ⁵ | | P | esfenvalerate ^{7a,3f} | O ^{7a} | med ⁵ | Noted (sporadic but increasing ²⁴) IPM pest in CA; methamidophos only effective control for it ^{3b} . | | | | dimethoate ^{7a} | O ^{7a} -⊚ ²⁴ | | | | carbaryl ^{7a,3f} | | low ⁵ | Esfenvalerate tank mixed with methomyl. ^{7a} Dimethoate & methamidophos hard on beneficials and nontargets and methamidophos undesirable | | | | | | | | СН | endosulfan ^{7a,3f} | ⊚ ^{7a,24} | low ⁵ | residues ²³ Spinosad is effective methomyl alternative ¹³ .Imidacloprid good residual activity ²³ | | | | | | | | О | imidacloprid ⁷ | ● ^{7a} | | | | | | | | | | О | insecticidal soap ⁷ | ● ^{7a} | | | | | | | | | | C | methomyl ⁷ | O^{7a} | | | | | lygus bugs
(minor) ⁵ | dimethoate ⁵ | O ^{7a} | high ⁵ | | С | methomyl ^{3f,5} | | med ⁵ | Spinosad is good methomyl alternative ¹³ Bimethoate hard on beneficials and nontargets ²³ | | | | methamidophos ⁵ | | med ⁵ | | P | bifenthrin ⁵ | | low ⁵ | D | | | | | | | | СН | endosulfan ^{7a,3f} | ⊚ ^{7a} | | | | | | | | | | Р | fenpropathrin ^{7a} | ● ^{7a} | | | | | leafminers, <i>Liriomyza</i> ^{7a} | methamidophos ⁵ | | med ⁵ | 15 | О | abamectin ^{5,7a} | ⊚ ^{7a} | med 5 | Methamidophos hard on beneficials and nontargets and has undesirable residues ²³ | | | (moderate) ⁵ | diazinon ⁵ | | high ⁵ | | C | oxamyl ^{5,7a} | \bigcirc ^{7a} | high ⁵ | Natural biocontrol parasitoids vary in | | | | dimethoate ⁵ | | high ⁵ | | P | esfenvalerate ^{7a} | O ^{7a} | low 5 | effectiveness ²³ . Dimethoate hard on beneficials and nontargets ²³ | | Pest Importance: Major = 20+% of all OP usage on pest; Moderate = 5-20% of all OP usage on pest; Minor = <5% of all OP usage on pest Efficacy Rating: Excellent = ⊕ Good = O Fair = ● Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides Region: California | Pest | Organophosphate | Efficacy | Mkt | | Class | Alt. Pesticide List | Efficacy | Mkt | Constraints of Alternatives | |-------------------------|------------------------------|----------|-------------------|--|-------|--|----------------------------------|-------------------|--| | Timing: Folia | Timing: Foliage/fruit | | | | | | | | | | tomato
pinworm | azinphos-methyl ⁵ | | high ⁵ | | О | tredecen acetate pheromone ^{7a} | ⊚ ⁷ a | | Methomyl killed off leafminer biocontrol agents and increased populations of leafminer ¹³ ; induces | | (moderate) ⁵ | methamidophos ⁵ | | low ⁵ | | С | methomyl ^{7a} | ● ²³⁻ ○ ^{7a} | med 5 | secondary pests ²³ | | | | | | | P | esfenvalerate ^{7a} | O^{7a} | high ⁵ | | | | | | | | В | Bacillus thuringiensis ⁵ | | med ⁵ | | | | | | | | С | oxamyl ⁵ | | high ⁵ | | | tomato
fruitworm | malathion ⁵ | | low ⁵ | | Р | esfenvalerate ⁵ | ⊚ ^{7a} | high ⁵ | Esfenvalerate caused secondary outbreak mites, leafminers ^{7a} . | | (moderate) ⁵ | | | low ⁵ | | С | methomyl ⁵ | O ⁷ | med 5 | Methomyl may induce secondary pests ²³ | | | methamidophos ⁵ | | low ⁵ | | О | Bacillus thuringiensis ⁵ | ● ²³⁻ ○ ^{7a} | high ⁵ | Methamidophos hard on beneficials and nontargets and has undesirable residues ²³ | | | | | | | О | abamectin ⁵ | | low 5 | | | | | | | | С | carbaryl ⁵ | O^{7a} | low 5 | | | | | | | | В | Trichogramma wasp egg biocontrol | ●23 | | Carbaryl effective late season ^{7a} . Carbaryl hard on beneficials and nontargets ²³ | | | | | | | О | cryolite ⁵ | | low 5 | concretions and nontargets | | | | | | | О | insecticidal soap ⁵ | | low 5 | Wasps for supression are very specific ^{7a} | $Pest\ Importance:\ Major=20+\%\ of\ all\ OP\ usage\ on\ pest;\ Moderate=5-20\%\ of\ all\ OP\ usage\ on\ pest;$ Minor=<5% of\ all\ OP\ usage\ on\ pest Efficacy Rating: Excellent = ⊚ Good = O Fair = ● Market Share: High = use of OP represents 20+% of all insecticide usage on pest; Med = 5-20% of all usage on pest; Lo = <5% of all usage on pest Insecticides: C = Carbamates; P = Pyrethroids; CH = Chlorinated Hydrocarbons; IGR = Insect Growth Regulators; B = Biological; O = Other pesticides Region: California | Pest | Organophosphate | Efficacy | Mkt | Class | Alt. Pesticide List | Efficacy | Mkt | Constraints of Alternatives | | | | |---|----------------------------|----------|-------------------|-------|--------------------------------|-----------------|------------------|--|--|--|--| | Timing: Folia | ge/fruit | | | | | | | | | | | | whitefly (green- | methamidophos ⁵ | | high ⁵ | О | imidacloprid ⁵ | ⊚ ^{7a} | low ⁵ | Tomato yellow leaf curl virus not yet in CA ^{7a} , when it is, preplant imidacloprid will likely have | | | | | house and silverleaf) ^{7a} (moderate) ⁵ | dimethoate ⁵ | | high ⁵ | С | oxamyl ⁵ | O^{7a} | low ⁵ | major usage. | | | | | , | diazinon ⁵ | | med ⁵ | О | insecticidal soap ⁵ | | low ⁵ | | | | | | | | | | О | rotenone ⁵ | | low ⁵ | | | | | | | | | | Р | pyrethrin ⁵ | | low ⁵ | | | | | ## ADDITIONAL INFORMATION: Note: Analyzed pests make up >95% of OP usage. **SOURCES:** See crop summary. Date: 6/24/98